Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Journal Article

Thermal Analysis of the Exhaust Line Focused on the Cool-Down Process

2014-04-01
2014-01-0655
At the engine restart, when the temperature of the catalytic converter is low, additional fuel consumption would be required to warm up the catalyst for controlling exhaust emission.The aim of this study is to find a thermally optimal way to reduce fuel consumption for the catalyst warm up at the engine restart, by improving the thermal retention of the catalytic converter in the cool down process after the previous trip. To make analysis of the thermal flow around the catalytic converter, a 2-D thermal flow model was constructed using the thermal network method. This model simulates the following processes: 1) heat conduction between the substrate and the stainless steel case, 2) heat convection between the stainless steel case and the ambient air, 3) heat convection between the substrate and the gas inside the substrate, 4) heat generation due to chemical reactions.
Journal Article

Analysis of Oxidative Deterioration of Biodiesel Fuel

2008-10-06
2008-01-2502
Methyl esters of saturated/unsaturated higher aliphatic acids (FAMEs) and a FAME of waste cooking oil (WCOME) were heated at 120°C in an air gas flow. The samples were analyzed before and after heating, using six different methods including electrospray ionization mass spectrometry. As a result, the samples after heating were found to contain low molecular weight aliphatic compounds and oligomers of the FAME. Based on the chemical structure of these oxidation products, reaction schemes were proposed for the deterioration of FAMEs. In addition, two unsaturated FAMEs containing 2,6-di-t-butyl-p-cresol (BHT) were similarly heated and analyzed to examine the effect of BHT on the oxidation of these FAME.
Technical Paper

Numerical Simulation Accounting for the Finite-Rate Elementary Chemical Reactions for Computing Diesel Combustion Process

2005-09-11
2005-24-051
To facilitate research and development of diesel engines, the universal numerical code for predicting diesel combustion has been favored for the past decade. In this paper, the finite-rate elementary chemical reactions, sometimes called the detailed chemical reactions, are introduced into the KIVA-3V code through the use of the Partially Stirred Reactor (PaSR) model with the KH-RT break-up, modified collision and velocity interpolation models. Outcomes were such that the predicted pressure histories have favorable agreements with the measurements of single and double injection cases in the diesel engine for use in passenger cars. Thus, it is demonstrated that the present model will be a useful tool for predicting ignition and combustion characteristics encountered in the cylinder.
Technical Paper

Development of the Chemical Recycling Technology of Glass Fiber Reinforced PA6 Parts

2001-03-05
2001-01-0694
Recently, the plastic material is positively introducing for automotive parts due to the Needs of vehicle weight reduction and cost saving. On the other hand, the countermeasure for scrapped car is a big subject to need to consider as a car maker. Therefore, the development of recycling technology for plastic parts has been necessary. In this study, we tried to develop recycling technology for glass fiber reinforced Polyamide6(PA6) which is applied to various automotive parts like an air intake manifold. As a recycling technique, we focused on the chemical recycling which can reclaim raw material of PA6(ε- caprolactams) from the post-consumer automotive parts. The chemical recycling we selected can be put on a higher priority because it has possibility to utilize the limited resource repeatedly. As a result, we could retain high purity of ε- caprolactams using our following two techniques which make possible to recycle Polyamide 6 materials. One is to separate PA6 from glass fiber.
Technical Paper

Numerical Simulation of Deactivation Process of Three-way Catalytic Converters

2000-03-06
2000-01-0214
This paper presents the numerical simulation method to predict the deactivation process of three-way catalytic converters. Three-way catalytic converter's deactivation typically results from thermal and chemical mechanisms. The major factor of thermal deactivation is the sintering of noble metal particles, which is known to depend on the ageing temperature and the oxygen concentration in the exhaust gas. The chemical deactivation is mainly caused by the poisoning, which has two effects on the catalyst deactivation. One effect is the loss of the catalyst activity, which is expressed by reduced frequency factors of reaction rates. Another effect is the suppression of the noble metal sintering. Poison deposits prevent the noble metal particles from moving in the washcoat, assisted by the reduced thermal loading of reaction heats, which is caused by the loss of the catalyst activity. Modeling these deactivation factors, we propose the rate expression of noble metal sintering.
Technical Paper

Engine Testing Comparison of the Relative Oxidation Stability Performance of Two Engine Oils

1995-10-01
952530
The relative oxidation stability of two fully formulated engine oils was compared in three testing methods by following the increase in kinematic viscosity of the oil. The purpose of the study was to determine the cause of the completely opposite ranking of the oxidation stability of the two oils that was observed in the ASTM Sequence IIIE engine test and the JASO M333 93 engine test and to determine the degree of correlation the two engine tests had with the field. The study consisted of laboratory oxidation testing, engine testing and taxi field testing to cover the range of conditions from controlled oxidation to actual driving conditions.
Technical Paper

A Multi-Dimensional Numerical Method for Predicting Warm-Up Characteristic of Automobile Catalytic Converter Systems

1995-10-01
952413
A multi-dimensional numerical method for predicting the warm-up characteristic of automobile catalytic converter systems was developed to effectively design catalytic converter systems which achieve low tail pipe emissions with satisfactory packagebility. The features of the method are; (1) consideration of the governing phenomena such as gas flow, heat transfer, and chemical reactions (2) capability of predicting warm-up characteristic for not only the catalytic converters but also the system as a whole during emission test modes such as the USA LA-4 mode. The description of the method is presented. The experimental verifications of the method were conducted to assure the accuracy of it. The effect of design parameters such as electrically heated catalyst (EHC), high loading of noble metal and thin honeycomb wall on warm-up characteristic of the catalyst are analyzed in the paper.
Technical Paper

Development of Metal Full-Filling Method Joining Ceramic Shaft to Metal Sleeve for High Performance

1993-03-01
930164
Toyota Motor Corporation has mass-produced turbochager with sillicon nitride ceramic rotors. A moment of inertia was reduced by 60% using ceramic rotor which improved turbochager response. The ceramic rotor was joined to metal shaft by new method which compensated problems in both shrink fitting and active brazing methods. They are generals for mechanical and chemical techniques, respectively. There still exist the following disadvantages. It is quite severe to controll the clearance of shrink fitting to obtain the reliability of the joint. The shaft may be loosened at high temperature with a small shrink-fit interference. The large shrink-fit interference could result in a failure of ceramic shaft due to large stress. Those may require a machinig accuracy with micron meter order of surface roughness which, leads to high cost.
Technical Paper

Development of Galvanized Aluminum Alloy Sheet for Body Panels with an Excellent Filiform Corrosion Resistance

1993-03-01
930703
Filiform corrosion phenomenon and its prevention method for 5000 series aluminum alloy sheet have been investigated. The painted aluminum alloy sheets were subject significantly to filiform corrosion caused by formation of a mottled and coarse zinc phosphate film during chemical conversion process. On the other hand, galvanized aluminum alloy sheet showed an uniform and fine phosphate film in a brief time and the filiform corrosion resistance was improved markedly. The test results of press-forming and corrosion for the prototype engine hoods made of this newly developed galvanized sheets have revealed a good formability and an excellent filiform corrosion resistance.
Technical Paper

Development of a Robot Simulation and Off-Line Programming System

1992-09-01
922120
In Toyota, a robot off-line programming system was developed five years ago for the use at spot welding processes. And it has been effective to reduce and level off the engineering time. This time we have developed the new robot simulation system. It has three newly features so that the system becomes capable of simulating and programming robots from various manufacturers with different functions. As a result, the new system can be applied to a variety of processes in automobile manufacturing. First, a universal robot programming language was developed which includes a variety of commands such as definitions of motion attributes, signals of inputs/outputs, control of program flow, special functions proper to each process, and so on. And the language can be translated to and from any particular programming language using pre / post processor, so the simulation system needs to deal with only one language.
Technical Paper

Nylon 6-Clay Hybrid - Synthesis, Properties and Application to Automotive Timing Belt Cover

1991-02-01
910584
ϵ-caprolactam was polymerized in the interlayer space of montmorillonite, the clay mineral yielding a nylon-clay hybrid (NCH). X-ray and TEM measurements revealed that each template of the silicate, which was 1 nm thick, was dispersed in the nylon 6 matrix, and that the interlayer distance of clay increased continuously from 1.2 nm for the unintercalated material to 21.4 nm for the intercalated material. Thus, NCH is a polymer-based molecular composite or a nano-composite. NCH contains 1-15 vol% of monolayer clay. Injection-molded NCH showed excellent mechanical properties compared with nylon 6 in terms of tensile strength, tensile modulus and heat resistance. The tensile modulus of NCH was twice that of Nylon 6, and the heat distortion temperature increased from 65°C for nylon 6 to 145°C for the NCH containing only 1.6 vol% of a clay mineral. It was found that such excellent properties of an NCH system was due to the strong ionic interaction between nylon 6 and the silicate layer.
Technical Paper

Valve Rocker Arm Material for Investment Casting

1985-11-11
852203
In order to develop the valve rocker arm material for the new type engine, we investigated various materials whose chemical compositions were selected using 30% chromium cast iron, which had shown good results in screening evaluation tests, as the basis. High chromium cast irons are well known for their abrasive wear resistance, but it has been very difficult to apply them for use as rocker arm material because their machinability is very poor, and because it is difficult for them to have a regular microstructure. In this paper, both the manufacturing method for the rocker arm which decreases the disadvantages that high chromium cast iron have and the rocker arm material best suited for this method are described.
Technical Paper

Development of a Multi-Purpose Robot Controller and its Application for Automotive Industries

1985-02-01
850409
Since the first robot: was introduced into our factory in 1971, about 1250 playback robots have been operated. But processes in which these robots were installed were limited to particular ones such as spot welding, are welding and painting. In many other processes robots have not been installed. Investing the reasons there is a main factor as follows, As to the application of robot, it is hard to evade the diversity of robot type because robots must be different from each other, if the most suitable robots are chosen in setting space, operating area, load capacity, speed and accurary against applied process and work pieces. If standard robots in the market are fitted to various conditions of processes or work pieces, the types of robots increase and many problems are produced on operation and maintenance.
X